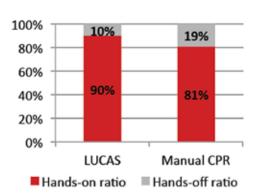


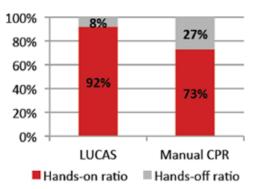
LUCAS[®] Chest Compression System: Operational Benefits

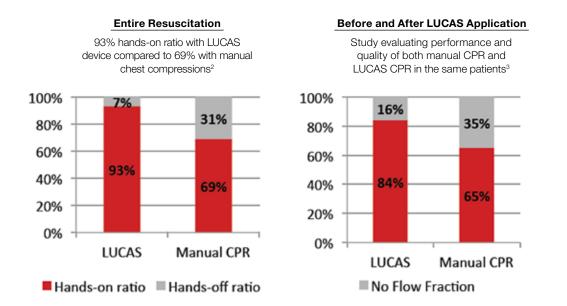
LUCAS chest compression system: Consistent, high-quality chest compressions during patient movement and transportation.


Whether it's up or down stairs, to and from the ambulance or during transport to the hospital, some cardiac arrest patients will need to be moved during ongoing CPR. However, it's well-known that it is almost impossible to provide effective CPR without interruption during transportation.

The LUCAS device makes it possible to improve chest compression quality and provide effective, consistent compressions with minimal interruption during patient movement and transportation.

As long as the LUCAS device and the patient are safely positioned on the transportation device (backboard, carry sheet, scoop stretcher, etc.) and the device stays in the correct position and angle on the patient's chest, it can stay active and continue to provide high-quality compressions while a patient is moved. When carrying a patient down stairs, extra fixation or straps from the LUCAS device to the transportation device may be required. The position of the suction cup should be checked frequently. Users should always remember to attach the LUCAS stabilization strap and pause and readjust the suction cup as necessary.


The LUCAS device improves CPR quality and increases chest compression fraction time—on-scene, during transport and throughout the entire resuscitation.



On-Scene¹

During Transport¹

"Patients treated with mechanical chest compressions received higher quality CPR than those treated with manual chest compressions. Hands-off ratios were significantly lower both before and during transport..."

"Mechanical chest compressions provided by the LUCAS device improve CPR quality by significantly reducing the NFF (no flow fraction) and by improving the quality of chest compression compared to manual CPR during OHCA resuscitation."³

"The low NFF with the LUCAS device may also have been achieved owing to fewer interruptions while loading the patient into the ambulance and during transport with ongoing resuscitation."³

For adequate tissue oxygenation, it is essential that healthcare providers minimize interruptions in chest compressions and therefore maximize the amount of time chest compressions generate blood flow.

Chest compression fraction (CCF) is the proportion of time that chest compressions are performed during a cardiac arrest. The duration of arrest is defined as the time cardiac arrest is first identified until time of first return of sustained circulation. To maximize perfusion the 2010 AHA and ERC Guidelines recommend minimizing pauses in chest compressions.^{4,5} Expert consensus is that a CCF of 80% is achievable in a variety of settings. Data on out-of-hospital cardiac arrest indicate that lower CCF is associated with decreased ROSC and survival to hospital discharge.⁶

REFERENCES

- 1. Olasveengen T, Wik L, Steen P. Quality of cardiopulmonary resuscitation before and during transport in out-of-hospital cardiac arrest. Resuscitation. 2008; 76(2):185-90.
- 2. Maule Y. "Mechanical CPR; Better, but more importantly, more CPR" (translated from French: Assistance cardiaque externe; Masser mieux, mais surtout, masser plus"), Urgence Pratique. 2011;106:47-48.
- 3. Tranberg T, Lassen J, Kaltoft A, et al. Quality of cardiopulmonary resuscitation in out-of-hospital cardiac arrest before and after introduction of a mechanical chest compression device, LUCAS 2; a prospective, observational study. Scandinavial Journal of Trauma, Resus and Emerg Med. 2015; 23:37.
- 4. Travers A, Rea T, Bobrow B, et al. Part 4: CPR overview. 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. *Circulation*. 2010;122(suppl 3):S678
- 5. Nolan J, Soar J, Ziderman D, et al. European Resuscitation Council Guidelines. Section 1. Executive Summary. Resuscitation. 2010;81:1220.
- 6. Meaney P, Bobrow B, Mancini M, et al. Cardiopulmonary resuscitation quality: improving cardiac resuscitation outcomes both inside and outside the hospital: a consensus statement from the American Heart Association. *Circulation*. 2013 Jul 23;128(4):417-35.

For further information, please contact Physio-Control at 800.442.1142 (U.S.), 800.895.5896 (Canada) or visit our website at www.physio-control.com

Physio-Control Headquarters 11811 Willows Road NE Redmond, WA 98052 www.physio-control.com

Customer Support P. O. Box 97006 Redmond, WA 98073 Toll free 800 442 1142 Fax 800 426 8049 Physio-Control Canada Physio-Control Canada Sales, Ltd. 7111 Syntex Drive, 3rd Floor Mississauga, ON L5N 8C3 Canada Toll free 800 895 5896 Fax 866 430 6115

©2015 Physio-Control, Inc. GDR 3324493_A